An Improved Synthesized Decision Tree Algorithm and its Application

Author:

Qiu Jian Lin1,Ji Dan1,Gu Xiang1,Li Fen1,He Peng1

Affiliation:

1. Nantong University

Abstract

Decision tree classification is one of the most widely-used methods in data mining which can provide useful decision-making analysis for users. But most of the decision tree methods have some efficiency bottle-necks and can only applied to small-scale datasets. In this paper, we present an new improved synthesized decision tree algorithm named CA which includes three important parts like dimension reduction, pre-clustering and decision tree method, and also give out its formalized specification. Through dimension reduction and synthesized pre-clustering methods, we can optimize the initial dataset and considerably reduce the decision tree’s input computation costs. We also improve the decision tree method by introducing parallel processing concept which can enhance its calculation precision and decision efficiency. This paper applies CA into maize seed breeding and analyzes its efficiency in every part comparing with original methods, and the results shows that CA algorithm is better.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3