Surface Generation and Chip Formation when Ultra-Precision Turning of SiCp/Al Composites

Author:

Ge Ying Fei1,Xu Jiu Hua2,Fu Yu Can2

Affiliation:

1. Nanjing Institute of Technology

2. Nanjing University of Aeronautics and Astronautics

Abstract

Chip formation and surface generation were investigated when ultra-precision turning of SiCp/2009Al and SiCp/ZL101A composites using Single Crystal Diamond (SCD) and Polycrystalline Diamond (PCD) tools. The results showed that the machined surfaces took on many defects of pits, voids, microcracks, grooves, protuberance, matrix tearing etc. It was noticed that most of these defects had an intimate relationship with the removal process of SiC particle. The surface finish was much better when the SiC particles were removed by cut through or in-situ pressed into mechanisms. Material swelling and side flow, tool-workpiece relative vibration, feed rate and tool nose radius, removal mode of SiC particles were these main mechanisms of surface generation. Generally, a saw-toothed chip was formed when ultra-precision turning this kind of material and the mechanisms of this type of chip were dynamic microcrack behavior and strain concentration, which induced by the non-uniform deformation of the workpiece material.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3