Comparison of Refractory and Non-Refractory Components in Cement Composites after High Temperatures Load

Author:

Holčapek Ondřej1,Reiterman Pavel1,Jogl Marcel1,Konvalinka Petr1

Affiliation:

1. Czech Technical University in Prague

Abstract

This article shows results of experimental program focused on determination of refractory and non-refractory components for cement composites and those influence on final properties. According to several research works from various universities strength and cohesion in general of common concrete rapidly decrease with temperature higher than 600 °C. To determine the difference between fire-resistance and common components four mixtures were designed. Non-refractory crushed nature silica aggregates and Portland cement compared to high alumina cement Secar®71 with crushed nature basalt aggregates were used. Combination of basalt fibers with two different lengths significantly improves. Basic mechanical properties tensile characteristics such as tensile strength in bending and compressive strength were examined on samples 40 x 40 x 160 mm. Exposure to 600 °C and especially 1000 °C in electric furnace for three hours simulated the high temperature load. Compared to silica aggregates together with Portland cement, where after1000 °C the composite is disintegrated with almost zero strength, the refractory components show considerably better parameters.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Refractory Composites with Mineral Additive;Materials Science Forum;2015-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3