Blood Compatibility of TiO2-xNx Thin Films Prepared by Improved Ultrasonic Spray Pyrolysis

Author:

Tang Xiao Shan1,Li Da1

Affiliation:

1. Zhanjiang Normal University

Abstract

Nitrogen-doped titanium oxide (TiO2-xNx) films were prepared by an improved ultrasonic spray pyrolysis device with buty1 titanate as the titanium source and ammonia as the nitrogen source. X-ray diffraction technique, scanning electronic microscope and UV-VIS spectroscopy were applied to study the microstructure, surface morphology and optical properties of the resulting films. The XRD peak intensity of the as-prepared films decreased with the increasing of nitrogen content and increased with the increasing of temperature, which indicates that the N doping introduced defects or strain in the TiO2film. The SEM results indicate that all the samples have a nano-sized uniform surface. The smallest band gap and best hydrophobicity are obtained at the nitrogen concentration of 4 at. % and deposited at 400°C. The blood compatibility of TiO2-xNxthin films was observed through platelet adhesion. The experiments results show that the amount of thrombus on the TiO2-xNxthin films is much less than that of pyrolytic carbon. The experimental results show that the nano-sized TiO2-xNxthin films will be a new kind of promising materials applied to artificial heart valve and endovascula stent.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3