Affiliation:
1. Anna University Chennai
Abstract
Airborne sensors become a primary system in any combat program and the effectiveness depends on the coverage spectrum of the sensors and also the ability of flying machine. However evaluating the mission functionalities using sensors in flight involves tasks namely, Man Machine interface evaluation, Sensor function capability evaluation, System interface evaluation, Performance evaluation, pilot work load etc needs to carried out and the issues observed during the flight test needs to be cleared before accepting the system. It is one of the challenging task for any combat aircraft development program and proving require time, effort and also may lead to time and cost overrun. To minimize the effort one of the method adopted in recent flight development programs are using high fidelity sensor model to evaluate the mission function in the simulator which will reduce the actual test required in flight.
Flight simulators during development of combat aircraft program have increased drastically in recent times with new technologies, possible to bring realism in a close room environment. However the success of any simulators depends on the fidelity of each subsystem integrated with in the simulator. Simulator contains simulation model which represents system in the aircraft world and the system which represents the outside world in a simulated manner. Mathematical based Avionics and weapon system Sensor simulation models is one of the major sub systems in any combat simulator and its level of usage depends on its fidelity. This paper proposes a unique and new methodology for evaluating the fidelity of simulated sensors used in the combat simulators. System identification technique allows generating mathematical model for dynamic systems having multiple input and output parameters. The developed model using System Identification Technique is a referent model through which the sensor model fidelity is evaluated.
Publisher
Trans Tech Publications, Ltd.