Analysis of a Tool System with a Four Axes Flexible Fixture

Author:

Huang Hung Ying1,Fuh Kuang Hua1,Wu Jung Shu1

Affiliation:

1. National Taiwan Ocean University

Abstract

This study is to develop a tool system, which is formed by a series of procedures, modifications, and assemblies, and to learn how processing characteristics are affected and what various processing parameters are. According to the cutting tool compressibility and clamping devices of rigidity and flexibility, three distinct combinations are as follows, that is (1) rigid clamping devices with hard cutting tools, (2) flexibile clamping devices with hard cutting tools, and (3) rigid clamping devices with soft cutting tools. The first are generally cutting processes, while the second are polishing processes and the third produce milling wipe or grinding and polishing compound processes. The cutting part is quite different and may cause different accuracy and removing rate. The mixture processes, such as turn-burnishing, milling-burnishing and grind-polishing, are existed. If certain flexible clamping devices with hard cutting tools are formed, the most suited to this process will be practical benefits. Considering the flexible cutting tools of clamping devices are less systematically designed, this study would mainly focus on the establishment of a systematic design, and actual cutting to explore its applications. In order to take into account the characteristics of flexibility and reduction of the retardation when connected, meanwhile, to meet not only the fixture complexity and availability (being easy) to manufacturing, but also to fit the strength and processing requirements, the systematic design is to create a tool system. After some cutting experiments have been conducted, the results proved that different degrees of flexibility on the workpiece surface would lead to different degrees of accuracy.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new integrated polishing process design for plastic mold steel to mirror-like surface;The International Journal of Advanced Manufacturing Technology;2014-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3