Sublimation Kinetics of Zirconium Tetrafluoride

Author:

Pretorius C.J.1,Pienaar A.D.1,Crouse P.L.2,Niemand H.F.1

Affiliation:

1. South African Nuclear Energy Corporation (SOC) Ltd. (Necsa)

2. University of Pretoria

Abstract

An important step of a new process being developed for the beneficiation of the mineral zircon (Zr (Hf)SiO4) to produce nuclear grade zirconium (Zr) metal, is the separation of the Zr from the hafnium (Hf). Zr ores typically contain between 1 and 3% Hf , whereas the use of Zr metal in the nuclear industry requires a Hf content <100 ppm, owing to its high neutron-capture cross section. The separation step is therefore key in the preparation of nuclear grade Zr, which is considered to be very difficult due to the various similarities in their chemical properties. The preparation of hafnium free zirconium relies on the traditional wet separation systems, for example solvent extraction systems. In contrast to the traditional aqueous chloride systems, Necsa focusses on dry fluoride-based processes. Dry processes have the advantage of producing much less hazardous chemical waste. In the work reported her, separation is achieved by sublimation/de-sublimation in the tetrafluoride form. The tetrafluoride is prepared by fluorination of plasma dissociated zircon (PDZ or Zr (Hf)O2•SiO2) with ammonium bifluoride (ABF). The separation involves the selective sublimation of the two tetrafluorides in an inert atmosphere under controlled conditions, and subsequent similarly selective desublimation. An accurate estimation of the sublimation rates the zirconium tetrafluoride (ZrF4) and hafnium tetrafluoride (HfF4) as a function of temperature is required since this forms the basis of the development of a sublimation model to determine whether the concept under consideration is theoretically possible. The sublimation kinetics of ZrF4is reported in this paper.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference39 articles.

1. X. J. Yang, A. G. Fane, C. Pin, Separation of zirconium and hafnium using hollow fibres: Part I. Supported liquid membranes, Chem. Eng. J. 88 (2002) 37–44.

2. M. Smolik, A. Jakóbik-Kolon, M. Porański, Separation of zirconium and hafnium using Diphonix® chelating ion-exchange resin, Hydrom. 9 (2009) 350–353.

3. M. Benedict, T. H. Pigford, H. W. Levi, Nuclear Chemical Engineering. McGraw-Hill, New York, 1981, pp.333-341.

4. D. J. Branken, G. Lachman, H.M. Krieg, O.S.L. Bruinsma, Influence of KF and HF on the selectivity of Zr and Hf Separation by Fractional Crystallization of K2Zr(Hf)F6, Ind. Amp Eng. Chem. Res. 49 (2010) 797–808.

5. H. Ishizuka, Process for refining zirconium tetrachloride containing hafnium tetrachloride, US Patent number: 385, 647, 724 (1974).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3