Thermal Field of Twin Variably Elevated Tandem Jets in Crossflow

Author:

Radhouane Amina1,Mahjoub Said Nejla2,Mhiri Hatem1,Le Palec Georges3,Bournot Philippe3

Affiliation:

1. National Engineering School of Monastir

2. Preparatory Institute for Engineering Studies

3. IUSTI, UMR CNRS 6595

Abstract

Consideration is given to twin inline elliptical fume jets issuing within an oncoming cooler environmental crossflow. Jets are emitted from similar nozzles, characterized by a variable injection height. Such a configuration is found at large scale, in the industrial urban zones, and more particularly in multiple chimney power plants. It is found at small scale as well like in cooling in electronic devices. The present study is carried out numerically by means of the finite volume method together with the Reynolds Stress Model (RSM) second order turbulent closure model and non uniform grid system particularly refined around the emitting nozzles. Emphasis is put on the temperature distribution around the emitting nozzles in order to highlight the joint effect of the jets elevation and temperature. It was mainly found that both parameters are complementary and help straitening the discharged jets, leading their thermal mixing away from the injection ground. Nomenclature

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3