Affiliation:
1. Namibia University of Science and Technology
2. Stellenbosch University
Abstract
In this paper, both first and second laws of thermodynamics are employed to investigate the combined effects of magnetic field, buoyancy force, velocity slip, suction/injection, porous medium permeability, thermal radiation absorption, viscous and Joule heating on mixed convective flow of an electrical conducting Casson fluid in a vertical channel. The dimensionless governing equations are obtained and solved numerically using a shooting technique coupled with a fourth order Runge-Kutta-Fehlberg integration scheme. The influence of various thermophysical parameters on velocity and temperature profiles, skin friction, Nusselt number, entropy generation rate and Bejan number are presented graphically and discussed quantitatively. It is found that with appropriate combination of thermophysical parameter values the entropy generation rate in the presence of an applied magnetic field can successfully.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献