Affiliation:
1. University of Ljubljana
2. University of California
Abstract
The influence of different parameters of laser shock processing applied to a precipitation-hardened aluminium alloy 6082-T651, on residual stress, surface tophraphy and microhardness was investigated. Processing was performed with an innovative Nd:YLF laser with the power densities of 2 and 4 GW/cm2, with a uniform pulse duration of 18 ns. Laser shock processing experiments were performed with the closed ablation method to ensure a higher shock-wave pressure. In the first phase, the study was focused on an evaluation of surface topography, with the record of the surface roughness profile and with the surface evaluation at a scanning electron microscope JEOL JXA-8600M. Then followed measurement of microhardness HV0.2in the cross section region. In the second phase comparison of residual stresses which were measured using the X-ray diffraction, was performed. Laser shock processing turned out to be a very efficient technique to improve surface properties. On the basis of the micro plastic deformation induced by shock waves, an increased dislocation density in the specimen surface was obtained. The gradient of dislocation piling through the specimen depth improved the variation of microhardness and residual stresses, which, in turn, improves fatigue strength of the material under dynamic loading.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Reference8 articles.
1. K. Ding, L. Ye: Laser shock peening - Performance and process simulation, (Woodhead Publishing Limited Cambridge, England, 2006).
2. M.R. Hill, T. E. Pistochini, A.T. DeWald: Proceedings of the 9th International Conference on Shot Peening, Eds.:V. Shulze, A. Niku-Lari, 2005, pp.156-162.
3. C. Rubio-González, et. al.: Mat. Sci. Eng. A386, 2006, pp.291-295.
4. Trdan, U., Grum, J., Porro, J.A., Ocana, J.L., 2009. In: 17th International Symposium on Gas Flow and Chemical Lasers, SPIE, Vol. 7131.
5. Z. Hong, Y. Chengye: Mat. Sci. Eng A257, 1998, pp.322-327.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献