Investigation on Heat Transfer Performances of Nanofluids in Solar Collector

Author:

Li Yang1,Xie Hua Qing1,Yu Wei1,Li Jing1

Affiliation:

1. Shanghai Second Polytechnic University

Abstract

Nanofluids containing Al2O3, ZnO, and MgO nanoparticles were prepared with distilled water as base fluid by violent stirring and ultrasonic dispersing. The forced convective heat transfer performances of the as-prepared nanofluids in tubular solar collector were investigated. The experimental results showed that the heat transfer efficiencies of Al2O3, ZnO, and MgO nanofluids were all increased in comparison to distilled water. For 1.0% vol. Al2O3, ZnO, and MgO nanofluids, the difference in temperature between nanofluids and distilled water all could exceed 3 °C in a day’s cycling. In daytime, from 6:00 a.m. to 18:00 p.m., the maximum differences in temperature of nanofluids and distilled water appeared at about 10:00 a.m., while the maximum temperatures were achieved at about 15:00 p.m. for both nanofluids and distilled water. In night, the temperatures of nanofluids still keep more than 1 °C higher than distilled water, which indicated that nanofluids could retain more heat energy. The viscosities and heat transfer efficiencies augmented with concentration increasing for ZnO nanofluids. Even at 0.2% vol. concentration, the difference in temperature between ZnO nanofluids and distilled could reach 2.55 °C. Based on low viscosity and excellent heat transfer performance, 0.2% vol. concentration ZnO nanofluid was an attractive option to be applied in solar energy utilization.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3