Nano Composite Membranes of Sulfonated Amine-Poly(ether sulfone)s and SiO2 for Fuel Cell Application

Author:

Seo Dong Wan1,Lim Young Don1,Lee Soon Ho1,Islam Md. Monirul1,Jin Hyun Mi1,Lee Keun Ho1,Jang Ho Hyoun1,Kim Whan Gi1

Affiliation:

1. Konkuk University

Abstract

Organic-inorganic Nano composite membranes were prepared by Sulfonated amine-poly(ether sulfone)s (S-APES)s and SiO2. S-APESs were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason®-S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(Ⅱ)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH2-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. Organic-inorganic nano composite membranes were obtained by mixing S-APES (45 %) with hydrophilic SiO2 (20 nm, 4-10 %) obtained by sol-gel process. Different contents of SiO2 of the S-APES were studied by FT-IR, 1H-NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The nano composite membranes exhibit conductivities (25 °C) from 3.51 x 10-3 to 4.10 x 10-3 S/cm, water swell from 57.25 to 60.50 %, IEC from 0.68 to 0.73 meq/g, and methanol diffusion coefficients from 2.81 x 10-7 to 3.33 x 10-7 cm2/S at 25 °C.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3