Affiliation:
1. Toshiba Corporation
2. National Institute of Advanced Industrial Science and Technology (AIST)
Abstract
Previous simulation works and experiments on the loss of 4H-SiC floating junction Schottky barrier diodes (Super-SBDs) show that the loss is related to the doping concentration in the drift region and the pattern of the floating layer. The effect of the doping concentration for lowering the loss is characterized the breakdown voltage (Vbd) and the on-state resistances (RonS) of the Super-SBDs based on Baliga’s figure of Merit (BFOM). Experimental devices with two doping concentrations in the drift region are fabricated to investigate the static characteristics: Vbd and RonS. The Vbd of the Super-SBDs is close to the simulation result, near 3000 V. However the tendency of the Vbd by the doping concentration is not similar to the simulation result. And the RonS are about 3.22 mcm2 which is higher than that of simulation result. The doping concentration optimized in this study does not show significant lowering loss and the design of the floating layer in the termination region affect the low-loss static characteristics of the Super-SBD. In addition, adopting PiN structure with floating layer (Super-PiN) affects the low-loss dynamic characteristics, optimizing the doping concentration in the drift region. We conclude that the fabricated Super-SBDs with the floating layer in the termination region, the drift region with a doping concentration of 1.01016 cm-3 and mesa-shaped termination structure, have excellent Vbd of 2990 V which is almost same as that of simulation result and RonS of 3.22 mcm2.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献