Influence of Cryomilling on Microstructure, Phase Stability and Oxidation Behavior of NiCrAlY Bond Coat in Thermal Barrier Coatings: Experimentation and Mechanistic Investigation

Author:

Ma Ka Ka1,Schoenung Julie M.1

Affiliation:

1. University of California, Davis

Abstract

Improved thermal cycling lifetime has been observed in thermal barrier coatings (TBCs) with cryomilled NiCrAlY bond coat. To understand this improved behavior, a robust experimental investigation is coupled with mechanistic explanations to describe the influence of cryomilling on microstructure, phase stability and oxidation behavior of the bond coat. It is found that cryomilling results in two significant changes in the NiCrAlY bond coat: unintentional Fe additions and creation of a homogeneous distribution of ultrafine oxide/nitride dispersoids. Through extensive microstructural analysis combined with computational simulation using Thermo-Calc® software, it is determined that the presence of Fe stabilizes the high temperature γ and β phases in the NiCrAlY bond coat, corresponding to a decrease in the transformation temperature. The results are explained on the basis of the Gibbs free energy for the individual phases. Characterization of the thermally grown oxide (TGO) in TBCs after isothermal oxidation with rigorous statistical evaluation indicates that the TGOs in the TBCs with the cryomilled bond coats are more uniform in thickness and slower growing. Both behaviors are attributed to the more homogeneous distribution of oxide dispersoids, which are a direct result of the cryomilling, yet remain stable after extensive thermal exposure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3