Evidence of Lath Martensite in High-C Japanese Sword Produced from Tamahagane Steel by Tatara Process

Author:

Das Ananda Kumar1,Ohba Takuya1,Morito Shigekazu1,Yaso Muneo2

Affiliation:

1. Shimane University

2. Yasugi Municipal Wakoh Museum

Abstract

Field Emission Scanning Electron Microscopy with Electron Back-Scattering Diffraction (SEM-EBSD) and Optical microscopy were used to point out the microstructural features of a Japanese sword prepared from tamahagane steel using traditional method. A lath martensite structure, which is usually characterized by packet and block in a prior austenite grain, existed both on the surface and the cross-section of the sword. SEM-EBSD study revealed that the development of prior austenite grain and packet were not much distinctive but the blocks within the packets were fairly observed. It was found that the packet size increased with the prior austenite grain size but the increment was small. Vickers micro-hardness measurement revealed that the sharp end was comparatively harder than other sections of the sword. EPMA study showed that the average carbon content of the sword was around 1 mass% along with a variety of non-metallic inclusions. Formation of lath martensite structure in such high carbon steel is remarkable but comparable to 0.6 mass% carbon ordinary steel. It was realized that the traditional method of preparation using tamahagane as well as the higher content of carbon provided the extraordinary features to the Japanese sword different from the ordinary steel.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3