Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase

Author:

Opila Elizabeth J.1,Boyd Meredith K.2

Affiliation:

1. University of Virginia

2. University of Rochester

Abstract

The oxidation kinetics of SiC fiber-reinforced SiC matrix composites with a BN interphase (SiC/BN/SiC) and the constituent fibers was characterized by thermogravimetric analysis and microstructural characterization at temperatures (816-1538°C) and oxygen partial pressures (0.1% to 5% O2) relevant to the hypersonic flight and re-entry environments. TGA of the SiC fibers showed that oxidation of the thin BN surface layer led to initially rapid oxidation kinetics and formation of a relatively thick silica scale at very short times under most test conditions. At longer times the fiber oxidation kinetics were representative of silica formation on pure SiC. Oxidation of the composites was conducted on coupons with the SiC seal coat removed on one edge to simulate damage to the composite, allowing ingress of oxygen to the fiber tows. Microscopy was conducted to determine the distance of oxygen ingress into the coupon. At the lower temperatures and oxygen partial pressures the exposed edge did not seal off by silica formation, yet the BN interphase areas were only minimally oxidized. At the intermediate temperatures silica formed at the exposed surface limiting further oxidation of the exposed fibers and BN interphase areas. Finally at the highest temperature and lowest oxygen partial pressure, active oxidation of SiC occurred for both the fibers and coupons resulting in irregular material attack. Implications for use of SiC/BN/SiC materials for hypersonic vehicle thermal protection systems are summarized.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3