Microstructure and Texture of AZ80 Magnesium Alloy Sheet Rolled by High Speed Warm Rolling

Author:

Sakai Tetsuo1,Watanabe Yohei1,Utsunomiya Hiroshi1

Affiliation:

1. Osaka University

Abstract

The present authors have succeeded in single pass large draught rolling of AZ31 and ZK60A magnesium alloy sheet below 200°C without heating rolls by raising the rolling speed above 1000m/min. Maximum reduction attained in single pass rolling was 60%. Among magnesium alloys, AZ31 is known as the most ductile alloy. It remains uncertain whether the high limiting reduction by high speed rolling can be attained in other magnesium alloys that are less ductile but stronger than AZ31. In this study, AZ80A (Mg-8.1%Al-0.63%Zn) sheets with the thickness of 2.7mm cut from the extruded sheets were used. Rolling temperature was varied from RT to 350°C. Rolling speed was 1000m/min. The limiting reduction in thickness increases with rolling temperature, and the maximum reduction of 52% is obtained at 250°C. The fracture surface of sheet rolled at 100°C shows ductile fractured surface, while it shows brittle fracture surface at 350°C. This difference in fracture mode is attributed to the precipitation of -particles at grain boundaries during holding at 350°C before rolling. From this result, high speed rolling can also be an effective tool for improving the rolling deformability of AZ80 sheet. The hardness of the rolled sheets measured on the transverse plane increases with increasing temperature and reduction. The variation of hardness with rolling temperature and reduction indicates the occurrence of dynamic recrystallization (DRX). The sheet rolled at 200°C with the reduction of 50% shows the tensile strength of 353MPa and the elongation of 29%, which is an excellent strength-ductility balance. By applying high-speed rolling process to AZ80 magnesium alloy, we can obtain a remarkable improvement in the material characteristics as well as rolling deformability.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3