Grain Growth Behavior of Al2O3 Nanomaterials: A Review

Author:

Gupta Ankur1,Sharma Samir1,Joshi Milind R.1,Agarwal Parnika1,Balani Kantesh1

Affiliation:

1. Indian Institute of Technology

Abstract

Emergence of engineering nanomaterials to render exceptional properties require understanding the thermodynamics and kinetics of grain growth and eliciting role of grain boundary mobility therein. Grain boundary mobility in alumina (Al2O3) has shown several repercussions on the evolution of microstructure to render drastic differences in the mechanical- (hardness, yield strength), optical- (transmittance), electrical- (conductivity), magnetic- (susceptibility), and electrochemical- (corrosion) properties. Consequently, the role of surface energy and the effect of temperature in equilibrating the grain shape and size are presented herewith. Several statistical or deterministic computational modeling have been attempted by researchers to elicit the dominating grain growth mechanisms. But, the limitations extend from the memory of computer and number of atoms in a simulation, or feeding the boundary conditions without incorporation of the initial microstructure to arrive at the dominating growth mechanism parameters. Contrastingly, the role of dopants in Al2O3 to either enhance or impede the grain growth is presented via various complexions responsible for transitions at the grain boundary interface. Six complexions resulting various grain boundary interface, strongly affect the grain boundary mobility, and sideline the dopant contributions in deciding the overall grain boundary mobility. It has also been presented that grain growth exponent increases with decreasing grain size, and additionally, secondary reinforcement of carbon nanotube (CNT) in Al2O3 impedes the grain mobility by as much as four times. The effect of temperature is found to be more pronounced, and has shown to enhance the grain boundary mobility by as much as six orders of magnitude.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3