Affiliation:
1. Korea Atomic Energy Research Institute
Abstract
The effects of the microstructural parameters, such as the prior austenite grain size and carbide size, on the cleavage fracture toughness were investigated in the transition region of Mn-Mo-Ni bainitic low alloy steels. Cleavage fracture toughness was evaluated by the ASTM standard E 1921 Master curve method. In order to clarify the effects of each microstructure, the grain size and carbide size of the test materials were independently controlled by modifying the heat treatment process. Firstly, the grain sizes were changed from 25㎛ to 110㎛ without any significant changes in the carbide size and shape. Secondly, the average carbide sizes were changed from 0.20 ㎛ to 0.29㎛ but maintaining the initial grain sizes. As a result, the fracture toughness in the transition region did not show any significant dependency on the austenite grain size, while the carbide size showed a close relation to the fracture toughness. Fracture toughness was decreased with an increase of the average carbide size. From the microscopic observation of the fractured surface, the cleavage initiation distance (CID) from the original crack tip showed no direct relationship to the prior austenite grain sizes but a strong relationship to the carbide sizes. However, the measured cleavage fracture toughness was strongly related to the distance from the crack tip to the cleavage initiation site. From the viewpoint of the weakest link theory, the particle size and their distribution in front of the crack tip is probably more important than the grain size in the transition temperature range where the fracture was controlled by the cleavage crack initiation.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference15 articles.
1. J. Malkin and A.S. Tetelman: Eng. Frac. Mech. Vol. 3 (1971), p.131.
2. J.F. Knott: J. Iron Steel Inst. Vol. 204 (1968), p.104.
3. G.Z. Wang and J.H. Chen: Metall. and Mat. Trans A Vol. 27A (1996), p. (1909).
4. R.O. Ritchie, B. Francis and W.L. Server: Metall. Trans. A Vol. 7A (1976), p.831.
5. P. Bowen, S.G. Druce and J.F. Knott: Acta Metall. Vol. 34 (1986), p.1121.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献