Investigation on the Modification Methods to Ceramic Cutting Tools

Author:

Miao He Zhuo1,Peng Zhi Jian1,Si Wen Jie1,Qi Long Hao1,Gong Jiang Hong1,Pan Wei1

Affiliation:

1. Tsinghua University

Abstract

There are too many methods to enhance the performance of ceramic cutting tools. All the methods can be sorted into two types: inner modification and surface modification. One of the main method to the inner modification of ceramic cutting tools is dispersion strengthening. Usually, in order to enhance the performance of ceramic cutting tools, some dispersed phases of TiN, TiC or TiCN, Al2O3, and/or ZrO2, and so on, and/or some whiskers, or fibers were added into the ceramic matrixes. And the new types of cutting tools, which possessed much more excellent performance than the original ones, were called composite ceramic cutting tools. For the composite Si3N4-based ceramic, Al2O3-based ceramic, and TiCN-based cermet, the cutting efficiency could be enhanced to 3~10 times, compared with cemented carbide tools. And they can be used for rough and finish machining of various cast iron workpieces and hardened steels, respectively, including milling and planning. Ion implantation is a surface modification for ceramic cutting tools. With certain doses of metals, for example, titanium, zirconium and chromium, and so on, implanted into the ceramics, the hardness, Young’s modulus, fractural toughness, and bending strength, etc., can be enhanced. For Al2O3 and Si3N4 ceramics, the hardness, Young’s modulus, and bending strength increased with a maximum factor of 50%, and the flank wear decreased with a factor of 2~12, compared with the unimplanted ceramic cutting tools. However, the main shortcoming of ion implantation to modify ceramics is the thickness of modified layers. They are, usually, too thin for cutting tools. The so-called PHEDP, pulsed high energy density plasma, is another surface modification method for ceramic cutting tools proposed recently. With such method, much thicker coatings of TiN, TiCN and (Ti,Al)N, etc, were deposited onto Si3N4 and WC ceramic cutting tools.The main merits involved in high hardness and Young’s modulus of the coatings, low residual stresses, and good adhesive strength between the coatings and substrates. And the flank wear of the as-depositedtools decreased with a factor of 5~10.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference19 articles.

1. X.S. Li and I.T. Low: Key Eng. Mater. Vol96 (1994), p.1.

2. E.D. Whitney: Power Metall. Inter. Vol. 15 (4) (1983), p.201.

3. H.Z. Miao, C.B. Chow, Y.H. Liu, et al.: Ceramurgia Inter. Vol. 6 (1980), p.36.

4. H.Z. Miao, L.H. Qi and G.W. Cui: Key Eng. Mater. Vol. 114 (1996), p.135.

5. H.Z. Miao, Z.Q. Zeng, X.P. Lin, et al.: J. Tsinghua Univ. Vol. 37 (6) (1997), p.70.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3