Abstract
Self-sealed laminar Si3N4/SiC composites, with different cross-section shapes and various thickness ratios of Si3N4 to SiC, have been fabricated. The laminates consist alternately of thicker Si3N4 layers ranging from 100 to 500µm and thinner SiC layers ranging from 6 to 15µm after sintering. Preliminary results indicate that SiC thin layer forms during sintering according to the reaction Si3N4 + 3C
® 3SiC + 2N2, which is confirmed by X-ray diffraction. An excellent physical and chemical compatibility between Si3N4 and SiC layers was observed. The self-sealed Si3N4/SiC composites not only demonstrate a superb resistance to delamination, usually associated with the plate-form ones, but also show a high damage-tolerance behavior. The laminated Si3N4/ SiC composite with a layer thickness ratio of Si3N4 to SiC of approximately 40 gives the highest value of work of fracture (WOF) of approximately 406 kJ/m3, whereas the highest toughness of 21 MPam1/2 was achieved at the layer thickness ratio of 50. The effects of the relative thickness of Si3N4 and SiC layers on the densification of the laminates are
examined and fracture behavior and microstructure of the Si3N4/SiC laminates discussed.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献