Strength and Fracture of Single Crystal Metal Nanowire

Author:

Wu Heng An1,Soh Ai Kah2,Wang Xiu Xi1,Sun Z.H.3

Affiliation:

1. University of Science and Technology of China

2. University of Hong Kong

3. Lanzhou University

Abstract

Numerical simulations have been carried out to determine the mechanical property of single crystal copper nanowire subjected to tension using the molecular dynamics method. The mechanism of deformation, strength and fracture are elucidated based on these numerical simulations. No strengthening is found after yielding of the single crystal nanowire. The simulation results show that the strength of copper nanowire is far greater than that of realistic polycrystalline bulk copper. By decreasing the size of the nanowire's cross-section, which leads to an increase of the ratio of surface atoms, the yield stress is increased. The strain rate has an influence on strength, and mechanism of deformation and fracture. When the strain rate is comparatively low, plastic deformation arises from dislocation slips and twins. However, when the strain rate is sufficiently high, amorphization is a dominant factor of plastic deformation and super-plasticity is found. The fracture process is demonstrated using the atomic images.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3