Surface Treatment of the Lithium Boron Oxide Coated LiMn2O4 Cathode Material in Li-Ion Battery

Author:

Chan Hong Wei1,Duh Jenq Gong1,Sheen Shyang Roeng

Affiliation:

1. National Tsing Hua University

Abstract

Surface modification on the electrode has a vital impact on lithium-ion batteries, and it is essential to probe the mechanism of the modified film on the surface of the electrode. In this study, a Li2O-2B2O3 film was coated on the surface of the cathode material by solution method. The cathode powders derived from co-precipitation method were calcined with various weight percent of the surface modified glass to form fine powder of single spinel phase with different particle size, size distribution and morphology. The thermogravimetry/differential thermal analysis was used to evaluate the appropriate heat treatment temperature. The structure was confirmed by the X-ray diffractometer along with the composition measured by the electron probe microanalyzer. From the field emission scanning electron microscope image and Laser Scattering measurements, the average particle size was in the range of 7-8µm. The electrochemical behavior of the cathode powder was examined by using two-electrode test cells consisted of a cathode, metallic lithium anode, and an electrolyte of 1M LiPF6. Cyclic charge/discharge testing of the coin cells, fabricated by both coated and un-coated cathode material, provided high discharge capacity. Furthermore, the coated cathode powder showed better cyclability than the un-coated one after the cyclic test. The introduction of the glass-coated cathode material revealed high discharge capacity and appreciably decreased the decay rate after cyclic test.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3