Determination of Optimal Milling Modes by Means of Shock-Vibration Load Reduction on Tool and Peak-Factor Equipment

Author:

Gavrilin Alexey1,Moyzes Boris1,Kuvshinov Kirill1,Vedyashkin Maxim1,Surzhikova Olga2

Affiliation:

1. Tomsk Polytechnic University

2. Czech Technical University in Prague

Abstract

Vibrodiagnostics of metal-cutting machines is an efficient method to increase reliability of all elements of the technological system «machine tool-device-instrument-detail». The development of vibrodiagnostic methods is especially important for milling metal-cutting machines which operate in intermittent cutting mode and are exposed to shock-vibration loads. One of the trends in the development of metal cutting equipment is to increase its productivity by expanding the ranges of cutting modes. Increase in the combination of cutting modes leads to increased probability of coincidence of the natural frequencies of the equipment and the frequencies of the cutting process which in its turn leads to operation of the machine equipment elements under resonance conditions. In the article we provide the results of our research aimed to develop the method to reduce shock-vibration load on tool and peak-factor equipment of milling machine. In our research we developed the technique that makes it possible to measure not only the general level of vibration, but also other parameters used for vibrodiagnostics, for example, the value of the peak factor has been developed. The method includes the development of a principle layout and of a plan for a three-factor experiment, construction and analysis of vibrational and spectral diagrams of the milling process for the assignment of optimal modes that provide machine operating at lower level of shock-vibration loads. Based on the results of the work we have come to the conclusion that it is rather promising to use the peak factor in analysis of the milling machines reliability.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3