Effects of Modification and Heat Treatment on Microstructure and Mechanical Property of Two-Step Foamed ZL111 Alloy Foam

Author:

Jiang Yu Yuan1,Luo Xiao Xu1,Chen Qing1,Zhao Ming Wei1,Lu Jian Sheng1,Zhou Yun1,Zuo Xiao Qing1

Affiliation:

1. Kunming University of Science and Technology

Abstract

ZL111 alloy foams with a porosity of 80% and an average pore diameter of 3.5 mm were fabricated using a two-step foaming process, and the effects of modification and heat treatment on their microstructure and mechanical property were studied. The results indicates that by Y&Sr modification, most of the eutectic silicon in the ZL111 alloy foam is transformed from plate-like into dot-like forms, and the average size of evenly distributed α-Al grain is reduced from 80~100μm to 30~40μm, which is more efficient than separate Y or Sr modifications. By combining Y and Sr modification and T6 heat treatment, the α-Al grain size of ZL111 alloy foam maintains its previous modified effect, eutectic silicon remains spherical and well-distributed, and CuAl2and Al9FeMg3Si5are dispersed homogeneously at the α-Al grain boundary. The Y&Sr modification and T6 heat treatment also significantly improved the compressive property of ZL111 alloy foam, when we compared them with the untreated ZL111 alloy foam. The compressive strength rises from 13.3 MPa to 22.6 MPa, the densification strain improves from 59.3% to 76.9%, and the energy absorption capacity increases from 4.87 MJ/m3to 13.77 MJ/m3.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3