Affiliation:
1. Yokohama National University
Abstract
Numerous studies have been conducted to develop next-generation recording technology in spintronics. Because ultrafine magneitc particles are vital components of the technology, the interplay between the microsturcture and magnetic properties has attracted attention extensively in recent years. We focused on the relationship between the microstructure and magnetic properties of Cu-Ni-X (X=Fe, Co, FeCo) alloys comprising nanogranular magnetic particles. In this work, we prepared Cu-20 at% Ni-5 at% (FeCo), Cu-20 at% Ni-5 at% Fe, Cu-20 at% Ni-5 at% Co and examined the changes of microstructure and magnetic properties associated with heat treatments and composition. To examaine microstructural evolution of the alloy specimens, we conducted transmission electron microscope observations (TEM) with the as-quenched specimens and those aged at at 773-1073 K. We also carried out magneto-thermo gravimetry (MTG) measurements, superconducting quantum interference device (SQUID) measurements, magnetoresistance (MR) measurements and first-principles calculations based on the Koster-Korringa-Rostker (KKR) method with the Coherent Potential Approximation (CPA), to investigate the magnetic properties. The present work confirmed that the microstructure significantly changed, depending on the composition and heat treatment conditions. The present work also revealed that the magnetic properties closely correlated with the microstructure of samples.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献