Thermal Shock Effect of Nano-TiO2 Enhanced Glass Fiber Reinforced Polymeric Composites: An Assessment on Tensile and Thermal Behavior

Author:

Mahato Kishore Kumar1,Nuli Krishna Chaitanya1,Dutta Krishna1,Prusty Rajesh Kumar1,Ray Bankim Chandra1

Affiliation:

1. National Institute of Technology

Abstract

Fiber reinforced polymeric (FRP) composite materials are currently used in numerous structural and materials related applications. But, during their in-service period these composites were exposed to different changing environmental conditions. Present investigation is planned to explore the effect of thermal shock exposure on the mechanical properties of nanoTiO2 enhanced glass fiber reinforced polymeric (GFRP) composites. The samples were conditioned at +70°C temperature for 36 h followed by further conditioning at – 60°C temperature for the similar interval of time. In order to estimate the thermal shock influence on the mechanical properties, tensile tests of the conditioned samples were carried out at 1 mm/min loading rate. The polymer phase i.e. epoxy was modified with different nanoTiO2 content (i.e. 0.1, 0.3 and 0.5 wt. %). The tensile strength of 0.1 wt.% nanoTiO2 GFRP filled composites exhibited higher ultimate tensile strength (UTS) among all other composites. The possible reason may be attributed to the good dispersion of nanoparticles in polymer matrix corresponds to proper stress transfer during thermal shock conditioning. In order to access the variations in the viscoelastic behavior and glass transition temperature due to the addition of nanoTiO2 in GFRP composite and also due to the thermal shock conditioning, dynamic mechanical thermal analysis (DMTA) measurements were carried out. Different modes of failures and strengthening morphology in the composites were analyzed under scanning electron microscope (SEM).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3