High Temperature Deformation Behavior in the Isothermal Compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe Alloy

Author:

Sun Hua Mei1,Qi Yun Lian1,Liu Wei1,Mao Xiao Nan1

Affiliation:

1. Northwest Institute for Nonferrous Metal Research

Abstract

The deformation behavior in isothermal compression of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy was investigated at the deformation temperature of 800°C, 850°C, 900°C, 950°C and 1000°C, the strain rate of 0.01s-1, 0.1s-1, 1.0s-1and 10.0s-1, and the height reduction of 70%. The flow stress increases rapidly with the increasing of strain at the beginning of deformation. When the strain exceeds a certain value, the flow stress begins to decline and becomes steady. With the increasing of deformation temperature and decreasing of strain rate, the steady stress and peak stress decrease significantly. The effect of strain on the processing maps of Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy is obvious. As the strain increases, the instable region moves towards high temperature and high strain rate area. Meanwhile, the contour of efficiency of power dissipation becomes more and more intensive, and the region with high efficiency of power dissipation reduces. Strain rate of 0.01s-1and deformation temperature of 900°C are the optimum processing parameters for Ti-5Al-4Mo-2Cr-4Zr-2Sn-1Fe alloy forging under strain of 0.3.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3