Preparation and Characterization of Low Dielectric Constant Films Using Silicon Sources

Author:

He Zhi Wei1,Lin Hong Xiao1,Li Chun Yan1,Mahajan Ashok M.2,Gupta Swati A.2,Zhou Mei1

Affiliation:

1. China Agricultural University

2. Kavayitri Bahinabai Chaudhari North Maharashtra University

Abstract

Effect of various silicon sources, such as TEOS, MTES mixed with TEOS and 1,3,5-tris(triethoxymethyl) on SiO2 films was investigated. The synthesized solutions were used as silicon sources to prepare silica-like backbone films. The investigation showed that all precursors can able to produce the flat and uniform films. An FTIR spectrum confirmed the formation of SiO2 in film matrix. The results indicated that the internal microstructure of each film is different. The incorporation of less polar bonds such as F and C was carried out using various Si sources, while the introduction of these sources confirmed through FTIR spectra. Optical properties of the films were carried out by using ellipsometric porosometry (EP) measurement. The leakage current density for the films prepared by using TEOS, MTES and 135TTEB was observed to be 2.8 × 10-7 A/cm2, 2.9 × 10-8 A / cm2, and 4.1 × 10-6 A / cm2, respectively, at 1 MV/cm electric field strength by the IV curves obtained by semiconductor characterization after fabricating MIS devices. The calculated dielectric constants from RI of the deposited SiO2 films were 2.0, 1.9 and 2.5 respectively. When the microstructure of the precursor solution changed, the introduction of atomic morphology or terminal inerted group ratio changed the internal bridging mode of SiO2, and thereby significantly reduced the dielectric constant and improved insulation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3