Effect of Cooling and Isothermal Holding on the Amount of Martensite/Austenite (M/A) Constituents, Microstructure and Mechanical Properties of Microalloyed Pipeline Steel

Author:

Kabanov Alexander1,Korpala Grzegorz1,Kawalla Rudolf1,Ionov Sergey2

Affiliation:

1. Technische Universität Bergakademie Freiberg

2. The National University of Science and Technology MISiS

Abstract

Constant increase of energy consumption in modern industry requires construction of heavily loaded pipelines with high throughput capacity. Therefore, high-strength steels should be used for the cost reasons. Additionally, the pipelines are also often used in the areas with cold climate and high seismicity. Therefore, strength and plasticity reduction is unacceptable. Bainitic steels with retained austenite (RA) or martensite/austenite (M/A) constituents meet these requirements. The purpose of this investigation is to determine thermo-mechanical treatment parameters with further accelerated cooling and additional isothermal holding for M/A-phase and mechanical properties formation. Experimental modeling of the production process was carried out using Gleeble HDS-V40 thermo-mechanical simulator. All investigations were realized with two high-strength micro-alloyed steels with different molybdenum and carbon content. Results showed that decrease of temperature and duration of isothermal holding as well as addition of molybdenum promote bainitic microstructure nucleation and reduce grain size and M/A-constituents. All these factors lead to a slight improvement in mechanical properties.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3