Structural Effects on Perovskite Phase Formation for PZT Powders Obtained by Polymeric Precursor Method

Author:

da Silva Margarete Soares1,da Silva Lucas L.1,de Souza Eliane F.1,Ramos Talita Cuenca Pina Moreira2,de Sá Igor Silva3,Barbosa Graciele Vieira3,Longo Elson4,Cavalheiro Alberto Adriano3ORCID

Affiliation:

1. State University of Mato Grosso do Sul

2. CERNA

3. Universidade Estadual de Mato Grosso do Sul

4. São Paulo State University

Abstract

Many synthesis methods are available to obtain a set of specific characteristics for lead zirconate titanate (PZT) piezoelectric ceramic powders. In this work, we have successfully prepared PZT powder samples through the Polymeric Precursor Method with x = 0.6, according the general formula Pb (ZrxTi1-x)O3. The powders were thermally treated from 380 to 550 oC and characterized by Raman spectroscopy and X-ray diffraction (DRX) in order to evaluate the effects of thermal treatment on the phase formation and the crystallization processes. The results obtained by Raman spectroscopy were compared to refined crystal data obtained by Rietveld method, leading to coherent conclusions about the structural effects occurring along the temperature of calcination. It was possible to characterize the tetragonal perovskite phase as predominant phase occurs only after 500 oC, but its crystallinity is already determined by synthesis method. Thus, no ordering process is verified for perovskite as a function of the temperature increasing during thermal treatment, in spite of the continuous pyrochlore-to-perovskite phase transition. The pyrochlore secondary phase starts to vanish before its proper crystallization process, changing the tetragonality of previously formed perovskite phase.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3