TMP as an Effective Technique to Produce Ultra-Fine Grained Steels

Author:

Kodzhaspirov Georgii1,Rudskoi Andrey1

Affiliation:

1. Saint Petersburg State Polytechnical University

Abstract

In recent years, great attention is paid to the creation of methods andthe technological processes providing ultrafine-grained state of metal materials including submicro - and nanocrystalline ones. It pertains to structural components and to the phases constituting the particular metal or alloy. The main development in terms of obtaining bulk metallic materials received in recent years, various schemes of processing of metals by plastic deformation, which allows to realize the so-called severe plastic deformation (SPD). Such approach usually propose realization of large plastic strains, providing a well-developed fragmented substructure with the creation of high angle misorientation of the boundaries between the fragments of the substructure. The second direction in receiving finely divided state is to create technologies that provide a significant refinement of phase as a result of processing. The most effective way of achieving both the above effects applied to bulk metallic materials is Thermomechanical Processing (TMP), which can be used as a standalone technology or in combination of such methods as accumulation roll bonding (ARB) or other similar SPD methods. This paper discusses various methods of thermomechanical processing, based on the use of hot, warm and cold deformation, in various combinations applied to single and multiphase steels, ensuring the achievement of ultra-fine grained structure with elements of submicro - and nanostructures.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3