Effects of Wire-EDM Machining Variables on Surface Roughness of D2 Steel Material

Author:

Rudrapati Ramesh1,Rathod Lakhan2

Affiliation:

1. Jadavpur University

2. JJT University, Rajastan, India

Abstract

Newly developed D2 steel is widely used for various advanced engineering applications. Machining of D2 steel to obtain desired quality responses has immense importance for the effective utilization of these materials for advanced industrial applications like aerospace, marine, automobile, etc. Wire electrical discharge machining (WEDM) is used to machine difficult to machine materials and to produce sophisticated features with better dimensional accuracy. Obtaining the fine surface roughness in WEDM has highly depends on correct selection of process parameters. In the present work, experimental investigation was planned to study the effects of WEDM input parameters on surface roughness (Ra) of D2 steel. Experimental runs were conducted by using L16 orthogonal array of Taguchi method. The analysis of variance was employed to determine the influences of process parameters on Ra. Response surface methodology (RSM) and cuckoo search optimization (CSO) algorithm had been used to model and optimize the surface roughness. From the study, it was found that Ra value had improved as compared to initial experimental runs.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of wire electrical discharge machining processing conditions using Taguchi method;INSTRUMENTATION ENGINEERING, ELECTRONICS AND TELECOMMUNICATIONS – 2021 (IEET-2021): Proceedings of the VII International Forum;2023

2. Minimization of Surface Roughness of WEDM’ed H13 Tool Steel Using Taguchi Method;Smart Technologies for Energy, Environment and Sustainable Development, Vol 1;2022

3. Analysis, modeling and optimization of surface roughness in cylindrical traverse cut grinding using factorial design, RSM and simulated annealing algorithm;IOP Conference Series: Materials Science and Engineering;2020-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3