Affiliation:
1. Beijing University of Technology
Abstract
The effect of the primary α content and precipitate on the creep resistance of a high-temperature titanium alloy with a small amount of Hf addition were studied. The microstructures with different primary α contents were prepared by the heat treatment of 920~1010 °C /1 h+700 °C/5 h, and the creep test (600 °C/150 MPa/100 h) was carried out. The interaction between the precipitation phase and the dislocation configuration was analyzed. The results showed that with the increase of solution temperature, the volume fraction of primary α phase decreased from 44.9% at 920 °C to 0% at 1010 °C, and the steady state creep rate of the alloy decreased from 60.60×10-4%/h to 3.72×10-4%/h, indicating that the creep property was significantly improved with the decrease of solution temperature. The basket structure with optimal creep resistance was obtained under the heat treatment of 1010 °C/1 h+700 °C/5 h. It is believed that during the high temperature creep test, the precipitated α2 phase and the hafnium-containing silicide hinder the dislocation motion in α crystal and the phase boundary, thereby improving the creep resistance of the alloy.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献