A Design Method for Sound Absorbing Structure at Low Frequency

Author:

Fu Ying Jie1,Wang Xiao Ming1,Mei Yu Lin1

Affiliation:

1. Dalian University of Technology

Abstract

Traditional acoustic absorbing materials are not effective for low-frequency engineering applications, but on the basis of the locally resonant principle, acoustic metamaterials can utilize the resonance of vibrators to dissipate acoustic energy and realize the subwavelength design of acoustic absorbers, therefore the acoustic metamaterials have great potential applications for noise reduction at low frequencies. This paper firstly employs the Bloch theory to investigate the effects of the parameters of the unit cell of the embedded membrane-and-mass metamaterials on the dispersion characteristics of the metamaterials, and the band gap is verified by the full wave finite element analysis. And then, a model of acoustic metamaterials is constructed by embeding an array of membrane-and-masses into a channel structure filled with acoustic materials. Next the transient frequency response analysis is performed to simulate the wave propagation in the model, the results show that the acoustic metamaterials can absorb the sound through the local resonance of the membrane-and-mass vibrators. Finally, an acoustic metamaterial maze structure is designed and analyzed, in the structure the membrane-and-mass array is embedded and the masses varies periodically. The research illustrates that the acoustic metamaterials with membrane-and-mass unit cells have excellent performances on the sound absorption at low frequency.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3