Fire Condition Effects on the Mechanical Behaviour of Composite Structures

Author:

Saputo Salvatore1,Russo Angela1,Raimondo Antonio1,Iodice Barbara1,Zarrelli Mauro2

Affiliation:

1. Università Degli Studi Della Campania “luigi Vanvitelli”

2. National Research Council

Abstract

The fire behaviour of Polymeric composite structures is one of the most critical aerospace research topics. Indeed, the exposure of Polymeric composite structures to high temperatures leads to material decomposition, associated to thermal and mechanical properties degradation. This degradation causes a reduction of the mechanical performances, which can be of main concern for safety reasons. In this paper, the tensile behaviour of Carbon Fibre Composite Polymer specimens, subjected to fire, has been experimentally and numerically investigated. The material properties degradation has been estimated according to an Arrhenius shape function, which relates the mechanical properties of the composite to the temperature. At first, static structural analyses have been carried out to assess the mechanical behaviour of the investigated specimen without fire effects. Then, a coupled thermo-structural analysis allowed evaluating the fire effect on the specimens’ mechanical and the thermal behaviour. In order to preliminary validate the proposed degradation model, the numerical results, in terms of Load versus Displacements curves, have been compared against data obtained from an ad-hoc experimental campaign where fire condition have been suitably replicated during the mechanical tests.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3