Superhydrophobic and Corrosion Protective Coating on Aluminium

Author:

Escobar Romero Ana Maria1,Rius-Ayra Oriol1,Llorca-Isern Núria1,Valles Gimenez Elisa1,Serrà i Ramos Albert1

Affiliation:

1. Universitat de Barcelona

Abstract

Industrial application of superhydrophobic surfaces is limited by the unsatisfactory mechanical properties of the material. Combining chemical etching and anodization terraced features containing aluminium oxide on different aluminium alloy surfaces were produced. After modified by fatty acid, the surfaces were superhydrophobic and they showed self-cleaning effect. The highest contact angle was obtained after forming hierarchical structures with a solution free of fluorine compounds; therefore, the process is considered eco-friendly. The alumina formed in the coating process promotes an improved corrosion resistance. The present study has three main objectives: to identify the molecules responsible for superhydrophobicity, the mechanism by which superhydrophobicity is produced, and consequently the influence of variables such as anodization time on the proposed processing method. We use time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) techniques to identify each compound involved in the final surface, by paying close attention to the analysis of the mechanism by which the chemical reaction proceeds. The morphology of the superhydrophobic surfaces was further observed by scanning electron microscope (SEM) and atomic force microscopy and was used to elucidate the effect of the anodization time in the properties of the superhydrophobic material.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3