Phase Formation in Copper and Calcium Titanate Dielectric Ceramic Obtained by Polymeric Precursor Method

Author:

Barbosa Graciele Vieira1,Gonçalves Sabrina Vitor1,Kawahara Creuza Kimito Caceres1,Amoresi Rafael Aparecido Ciola2,da Silva Margarete Soares3,Stropa Jusinei Meireles4,de Oliveira Lincoln Carlos Silva5,Cavalheiro Alberto Adriano1ORCID

Affiliation:

1. Universidade Estadual de Mato Grosso do Sul

2. LIEC

3. UEMS

4. UFMS - Cidade Universitária

5. Universidade Federal de Mato Grosso do Sul

Abstract

The polycrystalline ceramic named calcium and copper titanate is a dielectric ceramic with very high dielectric constant applicable in several electronic devices. The powder form for that advanced ceramic can be synthesized through chemical route, like the Polymeric Precursor Method at relative lower temperatures the presence of alkaline earth cations harms the structural homogenization during the crystallization process. In this work, the calcium and copper titanate powder was obtained by Polymeric Precursors Method by imposing a slow thermal decomposition of polymeric precursor and several crushing steps before the calcination at 800 °C for 4 hours. The entire process was observed by thermogravimetric analysis and FTIR spectrometry, including the nitrogen adsorption-desorption isotherms and X-ray diffractometry techniques for calcined power samples. It was observed the crystallization of the cubic Im-3 Ca1/4Cu3/4TiO3phase only starts after organics removal and full calcium carbonate elimination above 700 oC, which is followed by pore elimination and particle sintering. The chemical synthetic route used in this work shows the ability to prepare CCT powders sample with very structural homogeneity, which characteristics are required to manufacturing many electronic devices.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3