Abstract
A serious of non-polar a-plane AlGaN-based multiple quantum wells (MQWs) were successfully grown on the semi-polar r-plane sapphire substrate with metal organic chemical vapor deposition technology. Intense MQWs-related emission peaks at an emission wavelength covered from 277-294 nm were observed based on the photoluminescence measurement. It was found that the employment of the trimethyl-aluminum (TMAl) flow duty-ratio modulation method which was developed based on the two-way pulsed-flows growth technique played a crucial role to control the Al composition of the non-polar a-plane AlGaN epi-layers. The non-polar a-plane AlGaN-based MQWs were deposited with the new developed TMAl flow duty-ratio modulation technique. Evident-3th order X-ray diffraction (XRD) satellite peak was observed from the high resolution-XRD measurement, proving the successful growth of non-polar a-plane AlGaN-based MQWs with abrupt hetero-interfaces.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science