Experimental Study and Numerical Simulation of Microstructure Evolution in Al-Si Eutectic Solidification Process

Author:

Wu Bing1,Jiang Ao Lei1,Lu Hao1,Zheng Hong Liang1,Tian Xue Lei1

Affiliation:

1. Shandong University

Abstract

A mathematical physical model of microstructure evolution in Al-Si eutectic solidification process based on cellular automaton (CA) model was developed. Before the establishment of the model, the relevant near-eutectic experiments were carried out to analyze the effect of cooling rates measured by temperature curves on the eutectic structure which was observed through optical microscope (OM) and scanning electron microscope (SEM). Then a multiphase nucleation-growth CA model was applied to simulate the Al-Si irregular eutectic structure. The model adopted an alternative nucleation mechanism to investigate the influence of the critical nucleation value associated with solute concentration during solidification process. The growth kinetics took into account the solute and thermal field. According to the crystal structure of nonfaceted eutectic Al and faceted eutectic Si, different capturing rules were employed to calculate the growth of eutectic. In addition, the model was also used to research the irregular eutectic growth under different undercooling conditions. The results revealed that smaller critical nucleation value (absolute value) or higher eutectic undercooling tended to get a more refined eutectic microstructure. By compared with experimental results, it is indicated that the microstructure evolution of Al-Si eutectic growth can be reproduced quantitatively by numerical simulation with this model.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3