Substrate Placement inside CVD Tube for Graphene Production

Author:

Osman Muhammad Naqib1,Ani Mohd Hanafi2,Bakar Syed Noh Syed Abu1

Affiliation:

1. International Islamic University Malaysia

2. International Islamic University Malaysia (IIUM)

Abstract

Electronics and energy storage industry demand production of high-quality graphene which currently still a challenge. Chemical vapor deposition (CVD) has shown promises for high-quality graphene production. However, it involves control of many parameters from different aspects such as thermal fluid, mass transport, and chemical reaction. Thermal fluid aspect plays a significant role in CVD production of graphene but yet to be explored extensively. For a tubular hot-wall CVD with the heating reactor, issue of flow instability that will prolong the existence of vortices and spiral flow until the substrate required attention. Therefore current study aims to find the optimum substrate position inside the furnace. For that purpose the gas flow streamline will be observed, and minimum axial distance of the substrate will be determined. The tubular CVD is modeled using ANSYS Fluent®. The current model will not consider the chemical reaction involves and only single gas is used. This should be enough to seek the influence of thermal fluid aspects involves in CVD. The CVD tube will be divided into 3 sections where the middle part (furnace) was heated up to 1273K and the other two sections were kept at 300K. Gas was supplied to the tube and the distance from the furnace inlet to the point where the flow is fully developed is measured. Streamlines for the flow is also observed. The streamline shows that there is an induced secondary flow starting at the inlet which lasted until a certain axial distance. For flow with 50 sccm of flowrate needs an axial distance of 5 cm while flow with 250 sccm of flowrate needs 7 cm in order to become a smooth flow. Our results show that the placement of the substrate in the tubular hot-wall CVD required attention in CVD design. For flow with higher flowrate, it requires longer distance for the flow to become smooth and laminar and vice versa.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3