Affiliation:
1. Université Paris-Sud
2. Université De Lille 1
3. Shanghai Jiao Tong University
4. University of Lille
Abstract
Strength and ductility are the two most important mechanical properties of a structural material. However, they are often mutually exclusive. In this study, a 6 wt. % TiB2 nanoparticle reinforced 7075Al (i.e. TiB2/7075Al) composite was designed and produced by the processing route combining casting, friction stir processing, hot extrusion and T6 heat treatment. The result of tensile testing demonstrates that the as-processed composite sample presents an ultimate tensile strength of 677 MPa and a total elongation to failure of around 15 %, being higher than any Al or Al based materials ever reported. The typical microstructure contains the TiB2 reinforcement nanoparticles uniformly distributed in the equiaxed Al grain matrix (2 μm in average grain size). In addition to the dispersed nanoprecipitates of the 7075Al (Al-Zn-Mg-Cu) matrix, the integrated TiB2 nanoparticles are systematically decorated by a shell corresponding to (Zn1.5Cu0.5)Mg. This finding challenges our understanding and opens a door for further enhancing strength and ductility being easily scalable for industrial applications.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献