Forensic Analyses of Stress-Strain Diagrams to Evaluate Contributions from Microstructure

Author:

Saimoto Shigeo1,Langille Michael R.1,Niewczas Marek2

Affiliation:

1. Queen’s University

2. McMaster University

Abstract

The conventional characterization of work-hardening is to approximate the stress-strain diagram using the empirical curve-fitting of Hollomon or Voce. The new method uses the Taylor slip analyses to derive a functional form which is optimally fitted to the data. This constitutive relations analysis (CRA) duplicates the data using at least two fit loci. The fit parameters relate to the slip motion within the microstructure and hence its interpretation reveals the possible dynamic shape-change reactions. The fit-process defines a new yield stress which separates the yielding from the deformation mechanisms at large strains that breaks up into two regions separated by intersection parameters. The applications of CRA to nanovoid formation and growth leading to ductile failure, plane stress yield locus prediction using tensile tests and decoding the stress-strain diagram for age-hardened aluminum alloys have been successful. Using super-pure aluminum, this study confirms that CRA is based on crystal plasticity principles and that CRA can predict the correlation of the obstacle strength factor, α, with work-hardening, hence permitting conversion of flow stress at given strains to obstacle density. The derived results show that the inherent annihilation process and the changing strength factor are coordinated to result in a self-consistent constitutive relation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3