Spark Plasma Sintering of High-Energy Ball-Milled ZrB2 and HfB2 Powders with 20vol% SiC

Author:

Seetala Naidu V.1,Prevo Cyerra L.1,Matson Lawrence E.2,Key Thomas S.3,Park Ilseok I.3

Affiliation:

1. Grambling State University

2. Air Force Research Laboratory

3. UES, Inc.

Abstract

ZrB2 and HfB2 with incorporation of SiC are being considered as structural materials for elevated temperature applications. We used high energy ball milling of micron-size powders to increase lattice distortion enhanced inter-diffusion to get uniform distribution of SiC and reduce grain growth during Spark Plasma Sintering (SPS). High-energy planetary ball milling was performed on ZrB2 or HfB2 with 20vol% SiC powders for 24 and 48 hrs. The particle size distribution and crystal micro-strain were examined using Dynamic Light Scattering Technique and x-ray diffraction (XRD), respectively. XRD spectra were analyzed using Williamson-Hall plots to estimate the crystal micro-strain. The particle size decreased, and the crystal micro-strain increased with the increasing ball milling time. The SPS consolidation was performed at 32 MPa and 2,000°C. The SEM observation showed a tremendous decrease in SiC segregation and a reduction in grain size due to high energy ball milling of the precursor powders. Flexural strength of the SPS consolidated composites were studied using Four-Point Bend Beam test, and the micro-hardness was measured using Vickers micro-indenter with 1,000 gf load. Good correlation is observed in SPS consolidated ZrB2+SiC with increased micro-strain as the ball milling time increased: grain size decreased (from 9.7 to 3.2 μm), flexural strength (from 54 to 426 MPa) and micro-hardness (from 1528 to 1952 VHN) increased. The correlation is less evident in HfB2+SiC composites, especially in micro-hardness which showed a decrease with increasing ball milling time.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3