Analysis of the Volatile Organic Compounds (VOCs) during the Regeneration of Post-Consumed Poly(Ethylene Terephthalate) Using HS-GC-MS Method

Author:

Liu Shan Shan1,Hu Ji Yue1,Qin Dan1,Gao Ling Ling1,Chen Ye1,Ke Fu You1,Wang Chao Sheng1,Wang Hua Ping1

Affiliation:

1. Donghua University

Abstract

VOCs emissions from recycled PET are recognized as one of the major causes of poor healthy condition. Much attention has been increasingly focused on VOCs produced from regenerated PET for their significance in ecological safety. These emissions may be strongly influenced by the raw materials and manufacturing techniques of the recycled PET. However, there is very little published information regarding this issue. The purpose of this study was to examine VOCs releasing from reprocessed productions when exposed to high temperature or other extreme conditions.In this study, we determined and compared VOCs emissions from samples after different manufacturing stages such as PET popcorn, dried PET popcorn, screw melts, undrawed fibers and drawed fibers, including their species and content. To simulate the VOC emissions of samples processed with the high temperature in longer time during screw melting, we investigated VOCs from screw melts utilizing Thermo Gravimetric-Mass Spectrometry (TG-MS) with 90 min in 280°C . We found that: (1) The optimisation of the equilibration procedure for volatile organic compounds was performed and the optimal equilibration conditions were determined to be 30 min at 120°C ; (2) Seven individual VOCs were identified: considerable VOC content changes during the manufacturing process; and the drying was tremendously helpful in reducing the VOC emissions from PET popcorn; formaldehyde, acetaldehyde and TVOC were reduced by 24%, 58% and 50%, respectively after drying; while acetaldehyde, benzene, benzaldehyde and TVOC increased dramatically after screw melting; (3) The VOCs were released at the initial stage of heat preservation (about 5 min) and VOCs content came to the maximum which indicated the almost immediate thermal degradation in screw melting.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3