An Empirical Model for Prediction of Residual Stress Based on Grinding Forces

Author:

Guo Wei Cheng1,Li Bei Zhi1,Shen Shou Guo1,Wu Chong Jun1,Hu Jun1

Affiliation:

1. Donghua University

Abstract

Residual stress has a significant influence on mechanical strength of a manufactured part and is considered to be related with process parameters and grinding signals. This paper investigates the relationship between residual stress and forces in the grinding of maraging steel 3J33. Features in time and frequency domains are extracted from tangential and normal grinding forces via various signal processing techniques. A two-round selection based on the statistical criterion is proposed to choose the best features that are related to the residual stress in the surface layer. The selected features are combined linearly in order to develop an empirical regression model that is capable of predicting residual stress well. The predicted residual stress values are compared with those measured from the experiment performed under different process parameters, and the result shows a favorable agreement quantitatively.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Minimum Quantity Lubrication Machining;2022-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3