Numerical Study of Material Degradation of a Silicone Cross-Shaped Specimen Using a Thermodynamically Consistent Mooney-Rivlin Material Model

Author:

Jerábek Róbert1,Écsi Ladislav2

Affiliation:

1. Slovak University of Technology in Bratislava, Faculty of Mech. Engrg.

2. Slovak University of Technology in Bratislava

Abstract

At present multiplicative plasticity theories are used to model material degradation of hyperelastic materials within the framework of finite-strain elastoplasticity. The theories assume that the intermediate configuration of the body is unstressed and that such multiaxially stretched bodies do not have compatible unstressed configurations. As a result, there does not exist a motion whose material gradient could define the plastic deformation gradient. The assumption is however not consistent with the theory of nonlinear continuum mechanics and the related theories are not continuum based. In this paper material degradation of a silicone cross-shaped specimen in biaxial tension is studied using a thermodynamically consistent Mooney-Rivlin material model. The material model is based on the first nonlinear continuum theory of finite deformations of elastoplastic media which allows for the development of objective and thermodynamically consistent material models within the framework of finite-strain elastoplasticity. Such material models are independent of the model description and the particularities of the model formulation and moreover they can relate the internal power density of the model to the internal power density of the specimen coming from the tensile test of the modelled material. In this paper a few analysis results are presented and briefly discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3