Abstract
It is widely accepted that in most commercial hypoeutectic alloys, both static mechanical properties and feeding characteristics during solidification, are extremely linked to the coarseness of the primary phase. It is therefore of critical importance to provide tools to control and predict the coarsening process of the dendritic phase present in hypoeutectic melts. The characterization of the primary phase, a product of the primary solidification, has traditionally been neglected when compared to the eutectic solidification characterization in cast iron investigations. This work presents the morphological evolution of the primary austenite present in a hypoeutectic compacted graphite cast iron (CGI) under isothermal conditions. To that purpose, a base spheroidal graphite cast iron (SGI) material with high Mg content is re-melted in a controlled atmosphere and reversed into a CGI melt by controlling the Mg fading. An experimental isothermal profile is applied to the solidification process of the experimental alloy to promote an isothermal coarsening process of the primary austenite dendrite network during solid and liquid coexistence. Through interrupted solidification experiments, the primary austenite is preserved and observed at room temperature. By application of stereological relations, the primary phase and its isothermal coarsening process are characterized as a function of the coarsening time applied. The microstructural evolution observed in the primary austenite in CGI and the measured morphological parameters show a similar trend to that observed for lamellar graphite cast iron (LGI) in previous investigations. The modulus of the primary austenite, Mγ, and the nearest distance between the centre of gravity of neighbouring austenite particles, Dγ, followed a linear relation with the cube root of coarsening time.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献