Development Features of Thermal and Gas-Dynamic Performance of Mineral Wool Cupola Furnace

Author:

Matyukhin V.I.1,Zhuravlev S.Ya.1,Khandoshka A.V.1

Affiliation:

1. Ural Federal University Named after the First Russian President Boris Yeltsin

Abstract

Major unit for mineral melt production in industry is a shaft (cupola) furnace. Such type units are noted for the ease of fabrication and maintenance, high melting rate (up to 100-150 t/m2 per day), as well as high heat utilization efficiency (up to 60-80 % of the total supply). Design disadvantages may include inefficient workspace side-view, poor thermal and gas dynamic performance, lack of practical methods to impact the melting process. Another pressing problem is related to melt production in the amount of no more than 3 t/h, with the average coke consumption of up to 24-270 kg/t, and the overheating temperature level of no more than 1350-1400 °С. Thermal and gas dynamic performance analysis of mineral wool cupola furnace, based on evaluation of zone balance model demonstrated that mineral melt is produced under conditions of essential nonuniformity of the bed temperature, gas phase composition and heat exchange conditions, both throughout the bed height and the unit cross section.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3