Numerical Simulations and Experimental Studies on the Quasi-State Axial Compression Behavior of Steel-Based Porous Materials

Author:

Wei Yan Peng1,Yang Quan Zhan1,Gao Peng1,Miao Zhi Quan1,Cheng Jing Chang1,Sun Xun1,Yu Bo1

Affiliation:

1. Shenyang Research Institute of Foundry

Abstract

As a new type composite material, steel-based porous materials presented the higher stiffness, strength and higher temperature resistance in comparison with the nonferrous metals. In order to realize the free-design of pore structure and free-control of porosity of steel-based porous material, indirect 3D printing technology combined with the investment casting process has been used to fabricate the steel-based porous materials. The finite element method has been carried out to study the relationship between the porosity and the mechanical properties by quasi-static compression simulation, which is consistent with compression test. The modified Gibson-Ashby formula is used to establish the quantitative relationship between porosity and elastic modulus and yield strength of steel-based porous materials based on Kelvin structure.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3